A Generic Rate Equation for modeling Enzymatic Reactions under Living Conditions

نویسندگان

  • L. W. Lee
  • L. Yin
  • X. M. Zhu
  • P. Ao
چکیده

Based on our experience in kinetic modelling of coupled multiple metabolic pathways, we propose a generic rate equation for the dynamical modelling of metabolic kinetics. It is symmetric for forward and backward reactions. It’s Michaelis-Menten-King-Altman form makes the kinetic parameters (or functions) easy to relate to experimental values in database and to use in computation. In addition, such uniform form is ready to arbitrary number of substrates and products with different stiochiometry. We explicitly show how to obtain such rate equation rigorously for three well-known binding mechanisms. Hence the proposed rate equation is formally exact under the quasi-steady state condition. Various features of this generic rate equation are discussed. In particular, for irreversible reactions, the product inhibition which directly arise from enzymatic reaction is eliminated in a natural way. We also discuss how to include the effects of modifiers and cooperativity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical Modeling of the Temperature-Dependent Growth of Living Systems

In this investigation a non-equilibrium thermodynamic model of the temperature dependent biological growth of a living systems has been analyzed. The results are derived on the basis of Gompertzian growth equation. In this model, we have considered the temperature dependent growth rate and development parameter. The non-equilibrium thermodynamic model is also considered for exploring the variat...

متن کامل

Dynamic modeling of E. coli central carbon metabolism combining different kinetic rate laws

Detailed dynamic kinetic models at the network reaction level are traditionally constructed using mechanistic enzymatic rate equations and a large number of kinetic parameters have to be determined under nonphysiological conditions in vitro. However, the validity of these parameters under in vivo conditions is doubtful and the rates equations are usually highly complex. Therefore, one of the ma...

متن کامل

Platinum Extraction Modeling from Used Catalyst by Iodine Solutions

Platinum extraction from spent reforming catalysts in iodine solutions under atmospheric pressure at different temperatures, acid concentration, and iodine spices concentration, catalyst particle size, and impeller agitation speed have been studied in our group. In this system, platinum is oxidized from spent catalyst with I3¯ that is formed ...

متن کامل

Modeling of Anaerobic Digestion of Complex Substrates

A structured mathematical model of anaerobic conversion of complex organic materials in non-ideally cyclic-batch reactors for biogas production has been developed. The  model is based on multiple-reaction stoichiometry (enzymatic hydrolysis, acidogenesis, acetogenesis and methanogenesis), microbial growth kinetics, conventional material balances in the liquid and gas phases for a cyclic-bat...

متن کامل

Determining Enzyme Kinetics for Systems Biology with Nuclear Magnetic Resonance Spectroscopy

Enzyme kinetics for systems biology should ideally yield information about the enzyme's activity under in vivo conditions, including such reaction features as substrate cooperativity, reversibility and allostery, and be applicable to enzymatic reactions with multiple substrates. A large body of enzyme-kinetic data in the literature is based on the uni-substrate Michaelis-Menten equation, which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007